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A E O L I A N  T O N E S  O F  A P L A T E  IN  A C H A N N E L  

S. V. Sukh in in  and  S. P. Bardakhanov  1 UDC 517.947+534.14+534.2 

The conditions of the onset of aeroacoustic resonance phenomena near a plate in a gas flow 
in a rectangular channel are studied theoretically and ezperimentally in a two-dimensional 
formulation. The eigenfrequency as a function of the plate's chord and its position in the 
channel, the shape of  the eigenfunctions, and the effect of the Mach number of the basic gas flow 
versus the eigenfrequencies and ei#enfunctions and the mechanism of self-ezcited oscillations 
are determined. A mathematical model by means of which the dependence of the resonance 
phenomena on the geometrical parameters of the structure were performed is proposed and 
substantiated. 

I n t r o d u c t i o n .  The  investigation of self-excited acoustic oscillations in a rectangular channel with a 
plate - -  the simplest model of the periodic lattice of plates - -  is of importance, because this shape of an 
unbounded region is typical and occurs frequently in engineering. Self-excited oscillations that  are generated 
in real structures are, as a rule, caused by the interaction of the eigenoscillations of an infinite region with 
nonlinear sources: the formation of coherent structures in a flow, unsteady combustion, etc. The  important  
conditions of the onset of intense auto-oscillations are the coincidence of the frequency of an oscillation source 
with the acoustic eigenfrequency of an open infinite region and the nonorthogonality of the function that  
describes the source-generated acoustic waves and the eigenfunction. 

The first studies of self-excited oscillations near a symmetric lattice of plates in a rectangular channel 
were performed by Parker [1], who showed that  self-excited oscillations are purely acoustic, are not connected 
with plate vibrations, and are caused by coherent structures in the wake behind the plates. Usually, these 
oscillations are called a vortex sound or aeolian tones (Aeolus is the Greek god of the winds). Aeolian tones 
near a plate in a channel or near a regular grid of plates were studied theoretically and experimentally in 
[2-9]. In a two-dimensional formulation, self-excited vibrations near a plate in a rectangular channel in a 
two-dimensional formulation were treated by Sukhinin in [10]. He proposed and substantiated a mathematical  
model of eigenoscillations and investigated numerically the dependence of the eigenfrequendes of oscillations 
on the geometrical parameters  of the plate in the channel. 

Theoretical and experimental  investigations of acoustic oscillations near a plate in a channel can be 
grouped as follows: 

�9 Studying Resonance Properties of Unbounded Media. The existence of the acoustic resonance, the 
shape of self-excited oscillations (auto-oscillations), the dependence of resonant (eigen) frequencies on the 
geometrical parameters and the main gas flow. Mathematical simulation, numerical and experimental studies 
of self-excited acoustic vibrations in unbounded and semi-bounded regions. 

�9 Studying the Nature of a Source of Auto-Oscillations. Formation and development of coherent 
structures in the wake behind a plate in laminar or turbulent  flows. The interaction of the self-excited acoustic 
oscillations near the plate in the channel with the ordered structures in the wake behind the plate, and the 
effect of these structures on acoustic oscillations and the effect of oscillations on the ordered structures. 
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Fig. 1. Scheme of the experiment: 1) plate; 2) thermoanemometer gauge; 3) channel 
wall; 4) turbulent boundary layer; 5) wake; 6) generation region for coherent 
structures. 

The Joukowski-Kutta condition at the trailing edge has not yet been clarified in constructing a 
rigorous mathematical model of the aeolian tones of a plate in a channel with gas flow. Most probably, 
the problem cannot be solved within the framework of the linear theory, because the interaction of vortex and 
acoustic oscillations in the neighborhood of the edge of detachment is essentially nonlinear. From the authors' 
viewpoint, the Joukowski-Kutta condition is not satisfied for the acoustic mode of aeolian vibrations. 

In this paper, the source of aeolian tones is assumed to be ordered or coherent structures generated at 
the trailing edge of a plate. The possibility of control of turbulent shear flows of various types is associated 
precisely with the existence of these structures in the flow [11-15]. Control methods for coherent structures 
can be active (periodic in the time of action, for example, application of an acoustic field [13, 14]) or passive 
(variation of the geometry of a flow region). The phenomenon of aeroacoustic resonance, i.e., the increase in 
the amplitude and intensity of the aeolian tones of a plate in a channel, is an example of the implementation 
of flow conditions under which the presence of coherent structures and acoustic resonance properties of the 
main flow region are of decisive value for the flow as a whole. The acoustic and vortex modes are assumed to 
interact only on a plate and at the channel walls [16, 17]. 

Desc r ip t i on  of  t h e  E x p e r i m e n t .  Measurements were performed in an MT-324 closed-type wind 
tunnel of the Institute of Theoretical and Applied Mechanics of the Siberian Division of the Russian Academy 
of Sciences whose closed operating section had a square (0.2 x 0.2 m) cross section of length 0.8 m. The scheme 
of the experiment is depicted in Fig. h A flat plate with rounded leading and trailing edges was located in 
the plane of symmetry of the working section along the flow, and the radius of rounding off was equal to 
half the plate thickness. The plate was positioned in the center of the working section (H = 200 mm). In 
this experiment, we used a set of plates fabricated from transparent Plexiglass of thickness 8 and 10 mm and 
length (chord) L from 50 to 400 mm. The width was equal to the width of the working section, and it was the 
same for all the plates. As usual, the thickness of the half-finished sheets for plates differed by 0.1-0.3 mm 
from the nominal thickness of a sheet, and their surfaces were not additionally treated. To simulate a two- 
dimensional flow, the plates were placed such that they completely choked the working section of the channel. 
To examine the effect of the asymmetry of the flow region, the plate moved relative to the symmetry plane 
of the working section by the quantity h = 0-60 mm with a 10-mm step. The mean velocity of the incoming 
flow was determined using a Pitot-Prandtl  tube and a micromanometer. 

The mean velocity and the velocity pulsations at the local points of the flow in the wake and the 
boundary layer were measured by a thermoanemometric gauge with a gold-plated tungsten filament of 
thickness 6 /~m and length 1 mm. For measurements, we used an analog thermoanemometric apparatus 
manufactured by DANTEC. A 55M01-type thermoanemometer had the standard 55M10 bridge with arm 
ratio 1:20, and the maximum frequency of the bridge was 200 kHz for a flow velocity around a gauge of 
100 m/see. According to the producer's data, the typical output noise level was 0.013% at a flow velocity of 
10 m/see. 
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Fig. 2. Spectral composition of the velocity pulsations near the trailing edge. 

Fig. 3. Resonance-oscillation frequency versus the plate length: the solid curve refers to 
the calculation; the p o i n t s . ,  + refer to the experiment for the even and odd modes, 
respectively. 

In pulsation measurements,  the gauge moved along the plate simultaneously with the flow at various 
distances from its surface outside the boundary layers of the model and the channel walls. For qualitative 
control of the sound-pressure level, the microphone signals were used only for analysis of the spectral 
composition of the sound wave and as the reference signals for thermoanemometric measurements; the 
microphone was not calibrated. The thermoanemometer signals were processed digitally. The gauge was 
calibrated in a free flow near the Pi tot -Prandt l  tube at flow velocities ranging from 2 to 45 m/sec  in such a 
way that the error in the  determination of the mean velocity was smaller than 2%. The calibration function 
is described by the formula U = k l (E  2 - Eg) 1/" + kz(E - E0) 1/2, where E and E0 are the output  voltages 
of the anemometer  bridge for the mean flow U and zero velocities, and kl, k2, and 1In are the empirically 
found constants. The  first t e rm corresponds to the known King expression, and the  second term was added to 
take into account free convection. Only the longitudinal components of the mean and pulsation velocities U 
and u' were measured. These quantities were determined using a thermoanemometer  from which they arrived, 
through a MacADIOS-Adio analog-to-digital converter manufactured by "GW Instruments," at a PC in which 
the signals were linearized during the experiment and were subjected, if necessary, to spectral analysis in a 
4-Hz band with the use of the Fourier transform. 

We used a program for collection of thermoanemometric measurement data  and a number of applied 
programs for data  recording. In particular, a library Fourier-transform subprogram was used to record the 
spectral characteristics. This scheme of research allowed us to perform experiments in real time. The signals 
arriving at the  ADC were controlled by a two-beam oscillograph. The measurements were performed for 
velocities of the incoming flow U0 ranging from 5 to 45 m/sec. 

The measurements  in the boundary layer of the models have shown that  the turbulent  boundary layer 
occurred on the major part  of the model in the basic velocity range. The wake measurements (Fig. 2) have 
shown that  the linear dependence of the frequency of coherent structures on the velocity of the incoming flow 
is violated in some velocity range, whereas the aeroacoustic resonance was observed precisely in this range. 

The frequencies of the  coherent structures were measured as follows. The  thermoanemometer ' s  gauge 
was positioned downstream at a distance from the trailing edge equal to one thickness of the plate. It is 
worth noting that  the aeroacoustic resonance can be determined in experiments by the classical method [1]. 
The sound intensity in the working section of the channel increased abruptly for a certain range of the flow 
velocities. In this range, the fundamental frequency in the wake remained constant (the resonance regime), 
but the spectrum of velocity pulsations near the trailing edge contained additional harmonics (Fig. 2). The 
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oscillation amplitude at the fundamental frequency became much larger. In the after-resonance regime, the 
amplitude of the fundamental frequency decreased again, and no generation of additional harmonics was 
observed. It is seen that the fundamental frequency of pulsations in the wake is a linear function of the flow 
velocity. The velocity dependence of the frequency is known to be determined by the Strouhal number, which 
was approximately 0.22 in these experiments. Similar results were obtained for all the models of the plates. 
The almost horizontal "stepwise" sections on the plane (U0, f ) ,  whose ordinates coincide with the values of 
the resonant frequencies, are well pronounced for most of them, and at least one resonance regime is distinctly 
detected. For a plate of length 300 mm, there are resonant frequencies which were less than twofold as small, 
and the sound level at them was comparable. For a 400-mm plate, the aeroacoustic resonance phenomena 
occurred as well, but the sound was much weaker at the first resonant frequency than at the second one. 
The experiments for plates of various lengths made it possible to determine the dependences of the resonant 
frequencies on the lengths of the models. Figure 3 shows numerical and experimental data on the resonant 
frequencies versus the length of the plate's profile (relative to the channel height). 

Thermoanemometric measurements were carried out to obtain data on the frequency and shape of 
resonant acoustic oscillations. The gauge scanned the entire surface of the model and the areas beyond its 
leading and trailing edges for each fixed distance from the plate along the Y coordinate. The measurements 
were performed in the region lying outside the boundary layers of the plate and the walls of the channel's 
working section. The spectral analysis was carried out at each point, and the sound-wave frequency and the 
oscillation amplitude were measured at this frequency. As a result, we obtained data on the distribution of 
the amplitude of velocity pulsations in a standing sound resonant-frequency wave in the space between the 
plate and the channel wall along the X and Y coordinates. 

Ca lcu la t ion  a n d  C o m p a r i s o n  wi th  E x p e r i m e n t .  The geometry of the main flow and the region 
of acoustic oscillations are shown in Fig. 1. It is known [16] that the solution of the equations of gas motion, 
which are linearized with respect to the main flow, can be expanded into the sum of vortex and acoustic 
modes. In the case considered, this statement is not true for the entire flow region (the expansion is violated 
at the trailing edge). However, one can assume that the expansion into vortex and acoustic modes holds in 
the entire flow region except for the trailing edge, the unknown singularity of the solution at the trailing edge 
is described by the vortex mode (this is in agreement with Howe's viewpoint [17]), the acoustic oscillations 
are caused only by the vortex mode, and the effect of acoustic waves on the sound source should be taken 
into account only in the regimes in which the acoustic resonance phenomena (the increase in the amplitude) 
appear. 

Acoustic and vortex oscillations generated by the vortex detachment can be considered steady-state 
in time in the coordinate system related to the plate. This means that some ordered vortex structure that 
determines the frequency of acoustic oscillations is fixed in the wake. The potential u(z, y, t) of the acoustic 
velocity perturbation is of the form u(z, U, t) = u(z, U) exp (iwt). 

According to this, the equations for the potential of the acoustic velocity perturbation, which describe 
the acoustic oscillations u(z,  y) of a steady-state gas flow, take the form 

2iwM w 2 
- - - u s +  u = 0  in ~, (1) (1 M2)u~ +uuv c - ~  

where M = U/c is the Mach number of the main flow, c is the velocity of sound, w is the circumferential 
frequency of acoustic and vortex oscillations in the plate's reference system, and i is an imaginary unity. 
Equation (1) holds in the entire flow region ft. The Neumann conditions for an immobile plate, which are true 
for the sum of acoustic and vortex modes, should be satisfied at the channel wall B and the plate profile F. 
The vortex mode v, which is determined by the vortex structures in the wake, is regarded as a known function 
of coordinates. The acoustic and vortex modes at the channel walls and the plate are related by the relation 

u y = - v ( z , t / )  on F + B .  (2) 
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The form of Eq. (2) can be simplified if the solution is searched for in the form 

u(x,y) = fi(x,y)exp z~ (1 _--~2) (3) 

and the dimensionless variables ~ = z/(H~/1 - M 2) and ~" = y/H, where H is the channel height (see Fig. 
1), are introduced. In dimensionless variables, for the unknown function fi(~, r Eq. (1) has the form 

u ~ + u r 1 6 2  in fl. (4) 

Here and below, A = H w / ( c V ~ -  M 2 ) has the sense of a dimensionless frequency and the bar above the 
function u is omit ted everywhere. For a more convenient comparison with experimental results, we can use 

the expression A = (2fHTr)/(ck/1 - M2), where w = 2 r f  and f is the oscillation frequency measured in Hertz. 
In the new variables, the width of the channel is equal to unity, and to the plate length L corresponds the 

dimensionless quanti ty l = L / (HVI~-  M2), which characterizes the length of the plate profile relative to the 
channel height with the kinematic correction because of the flow. The correction increases the real length of 
the profile. 

It is noteworthy that  if the Neumann condition (2) is satisfied for u(x, y), the function u(~, r is subject 
to a similar condition in which the required replacement of the variables was performed: 

ur162 = -v (~ , r  on B + r .  (5) 

Relations (4) and (5) describe the forced oscillations near the plate in the channel. They are linear, 
and, therefore, one can search for the solution in the form u = u + w, where w is the partial solution of Eq. (4) 
subject to the inhomogeneous boundary conditions (5), and u is the general solution of this equation subject 
to the homogeneous boundary conditions ur r = 0 at B + F. 

Problem (4) and (6) describes self-excited vibrations near the plate in the channel. Problem (1) and 
(2) reduces to problem (4) and (5) by replacing the variables. 

R e m a r k .  After the  replacement of the variables, the s tudy of aeroacoustic resonance phenomena 
(aeolian tones) near a plate in a channel in a gas flow is equivalent to the s tudy of eigenoscillations near a 
plate in a channel without a gas flow. 

�9 Dependence of the Frequency on the Length of the Plate Profile. The eigenfrequency of oscillations 
versus the profile length is shown in Fig. 3. Good agreement of the experimental and theoretical results allows 
us to draw a conclusion on the  high accuracy of mathematical  simulation of self-excited oscillations. For short 
lengths of the profile, the  difference between the theoretical and experimental data can be explained by the 
strong effect of the plate thickness because, in this case, it becomes comparable with the length of the plate's 
profile. We note that  the dimensionless frequency tends to lr at L --* 0. 

�9 Dependence of the Frequency of Self-Excited Vibrations on the Position of the Plate in the Channel. 
Figure 4 shows experimental  data  on the first resonant frequency versus the position of the plate. Bardakhanov 
and Poroshin [18, 19] have found that  the resonant acoustic frequency varied in displacing the plate from the 
symmetry plane. In the present paper, the dependence of the resonant frequency on the position of the plate 
in the channel was derived. Measurements were performed as follows. A plate of length 150 m m  was displaced 
at some distance h, which is a multiple of 10 mm, to the upper wall of the working section. The  distance 
between the plate plane and the upper wall was halved, and the thermoanemometer 's  sensor moved over the 
model, measuring the frequency and amplitude of pulsations in the sound wave. The plate was shifted to the 
next position h, and the process was repeated. As a result, the resonant frequencies, the maximum values 
of the amplitudes, and the  wave shape were obtained for each value of h. Figure 4 shows the dependence 
of the first resonant frequency of oscillations on the position of the plate, which is in agreement with the 
results of [10]. Clearly, the  displs of the plate from the symmetry axis leads to an increase in the 
resonant frequency. The corresponding points are well approximated by a quadratic parabola. The  sound- 
wave ampli tude measurements  have shown that  the vibrations are localized in the region between the plate 
and the wall that  is the closest to it. 
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Fig. 4. The first resonant frequency versus the position of the plate (L = 150 mm) in the 
channel of height H = 200. 

Fig. 5. Acoustic oscillations of the velocity on the longitudinal coordinate. 
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Fig. 6. The reduced frequency of self-excited oscillations s versus the main-flow Mach 
number for the length of the plate profile L = 0.5, 1, and 5 (points o, +, and t3, 
respectively). 

The calculated data of [10] on the dependence of the first eigenvalues for the even and odd modes for 
a fixed profile length on the position of the plate in the channel are in agreement with the experimental data 
presented in Fig. 4. 

F o r m  of E i g e n f u n c t i o n s  and  Mechan ics  of  Se l f -Exci ted  Osci l la t ions.  Figure 5 illustrates the 
measurement of the velocity pulsations in the sound wave above a model of length 400 mm (the measurement 
procedure was described above). The measurement data are given for the second resonant frequency, which 
was equal to 692 Hz for this plate. The distributions for the first resonant frequency are different from those 
shown in Fig. 5: they have two maxima located in the region near the leading and trailing edges of the plate, 
rather than three maxima. Recalculation permits one to derive a formula for the sound wave from these 
distributions. 

The effect of the basic gas flow on the shape of the eigenfunctions (aeolian tones) is due to in the fact 
that they are related to the eigenf.unctions of problem (I) and (2) by the transformation (deformation) (3). 

In addition, we have to note that the influence of the Mach number on the frequency of self-excited 
oscillations near the plate in the channel (Doppler effect) are taken into account using the relations for the 

dimensionless frequency )~ = wH/(cV/~ - M 2) and length l =  L i ( H q l  '-~ M2). Figure 6 shows the dependence 
of the first reduced frequencies of self-excited oscillations near a plate with a fixed length of the chord on the 
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gas-flow Mach number in the channel. The quantity s = ~ / 1  - M 2 = ~H/c is called a reduced eigenfrequency. 
We note that the frequency of self-excited oscillations decreascs with increasing flow velocity. 
Conclusion.  (1) A mathematical model that describes the aeolian tones of a plate in a channel has 

been proposed and verified experimentally. 
(2) The dependence of the frequency of self-excited oscillations on the length of the plate profile and 

the plate's position in the channel has been found numerically and experimentally. 
(3) The form of the self-excited oscillations for the first modes has been found experimentally and 

numerically. 
(4) The effect of the main-flow velocity on the frequency of self-excited oscillations (Doppler effect) 

has been studied. 
The authors are grateful to R. M. Gapirov for a helpful discussion of the work. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 95-01- 

00894). 
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